Matematika

Pertanyaan

Tunjukkan bahwa i^2 = n (n + 1) (2n + 1)/ 6 jika n adalah suatu bilangan bulat positif.

1 Jawaban

  • Misalkan,
    i1 = 1
    i2 = 1+4 = 5
    i3 = 1+4+9 = 14
    i4 = 1+4+9+16 = 30
    dst.
    Hingga
    1....5....14....30
    ...4....9.....16
    ......5....7
    .........2
    Barisan bilangan berpangkat tiga,
    Un = an^3+bn^2+cn+d
    Sehingga
    U1 = a+b+c+d
    U2 = 8a+4b+2c+d
    dst.
    a+b+c+d......8a+4b+2c+d......27a+9b+3c+d......64a+16b+4c+d
    ..........7a+3b+c..........19a+5b+c..........37a+7b+c
    .....................12a+2b...............18a+2b
    .....................................6a
    Dari situ didapat:
    6a = 2
    a = 1/3,

    12a+2b = 5
    4+2b = 5
    b = 1/2

    7a+3b+c = 4
    7/3 + 3/2 + c = 4
    c = 1/6

    a+b+c+d = 1
    1/3+1/2+1/6+d = 1
    d = 0

    Didapat Un = 1/3 n^3 + 1/2 n^2 +1/6 n
    1/6 (2n^3 + 3n^2 + n)
    1/6 n(2n^2+3n+1)
    1/6 n(n+1)(2n+1)
    n(n+1)(2n+1)/6

Pertanyaan Lainnya